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The progressive miniaturization of semiconductor devices, and the use of bulk
materials other than silicon, necessitates the use of a wide variety of models
in semiconductor device simulation. These include classical and semiclassical
models, such as the Boltzmann equation and the hydrodynamic system, as
well as quantum transport models such as the quantum Boltzmann equation
and the quantum hydrodynamic system. This paper gives an overview of
recently developed numerical methods for these systems. The focus is on
Galerkin methods for the semiclassical and quantum kinetic systems and on
difference methods for the classical and quantum hydrodynamic systems. The
stability and convergence properties of these methods and their relation to the
analytical properties of the continuous systems are discussed.
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1. Introduction

The goal of numerical semiconductor device simulation is to model the
flow of electrons in a crystal in order to predict macroscopically measur-
able quantities, such as currents and heat fluxes, in given operating and
environmental conditions, such as the bias applied to a given device and
ambient temperature. Other than in process simulation, it is always the
same physical process that is considered, namely the transport of charged
particles in a solid state medium. Different mathematical models are used
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only because of the wide range of device dimensions and operating condi-
tions. Since one and the same set of equations can be used to model a wide
variety of devices, it is reasonable to develop customized numerical methods
for the governing equations.

The key parameters influencing the choice of model equations are the
mean free path of electrons (the average length of free flight before the
electron undergoes a scattering event), the number of free electrons in a
given device, the size of the Planck constant in relation to the dimensions
of the simulation domain, and the ambient temperature. These parameters
determine whether the electrons can be modelled as a continuum, as classical
particles or via quantum mechanical descriptions.

The resulting model equations range from the Schrodinger equation for
the evolution of the electron wave function to the drift-diffusion system for
the evolution of an 'electron gas' which is close to a Maxwellian equilibrium.
Because of the progressive miniaturization of semiconductor devices and the
use of materials whose mean free path is considerably longer than that of
silicon, the trend in device simulation is certainly towards a more and more
microscopic description. Since the field is now so wide, one necessarily has
to limit the scope of an overview of numerical techniques in device simula-
tion. There are two types of models and simulation techniques which are
extremely well developed and documented at this point. One consists of
finite difference and finite element techniques for the drift-diffusion system,
and the other of Monte Carlo methods for the Boltzmann equation. Since
it would be impossible to do all this work justice in the space provided, we
have instead decided to focus on more recent developments, and refer the
reader to excellent reference works such as Kersch and Morokoff (1995) and
Selberherr (1981) for these topics. The first category of methods presented
in this paper deals with the intermediate regime between the Boltzmann
equation and the drift-diffusion system. This category comprises methods
based on series expansion of the Boltzmann equation and various forms
of moment closure hierarchies, including the so-called hydrodynamic mod-
els. The second category includes methods for quantum kinetic equations
and their moment closure hierarchies, such as the so-called quantum hydro-
dynamic model.

This paper is organized as follows. Section 2 presents a brief overview of
the various models, pointing out some of the features relevant to numerical
simulations. Section 3 deals with methods for semiclassical transport de-
scriptions, based on the semiclassical Boltzmann equation. Series expansion
methods around a Maxwell distribution are discussed in Section 3.1, numer-
ical methods for the hydrodynamic model are discussed in Section 3.2, and
extensions of hydrodynamic models are presented in Section 3.3. Section 4
is devoted to numerical methods for quantum transport models. In Section
4.1 numerical methods for the quantum Boltzmann equation are discussed.
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As is the case for the classical Boltzmann equation, many of the interest-
ing effects can be studied using much simpler macroscopic models based on
moment hierarchies, leading to the quantum hydrodynamic model. Section
4.2 deals with numerical methods for the quantum hydrodynamic system.

2. Model equations

In this section a brief overview of the underlying model equation is presen-
ted. Models for semiconductor device simulations generally fall into two cat-
egories, namely semiclassical models, based on the semiclassical Boltzmann
equation, and quantum mechanical models, derived from the Schrodinger
equation. In Section 2.1 we discuss the semiclassical Boltzmann equation
together with some of its features, such as conservation properties. In Sec-
tion 2.2 its quantum mechanical equivalent, namely the quantum Boltzmann
equation, is presented.

2.1. The semiclassical Boltzmann equation

The basis for the semiclassical description of electron transport is the Boltz-
mann equation in the form

dtf + divx(v(k)f) - I divk(E(x, t)f) = Q(f). (2.1)

Here f(x, k, i) denotes the density of electrons, x stands for position, k de-
notes the three-dimensional wave vector, and t time. If we let e(k) denote
the energy of an electron with wave vector k in a certain band, the cor-
responding velocity in (2.1) is given by v(k) = h~lVk£. In a vacuum, the
classical Hamiltonian yields the energy-wave vector relationship

Thus the velocity v and the wave vector k are identical up to the constant
h/m and the classical Boltzmann transport equation is obtained. In a crys-
tal, the relationship between the wave vector and the energy is given by the
parametrization of the eigenfunctions of the Schrodinger equation with a po-
tential that is periodic on the crystal lattice, and the energy band function
e(k) has to be computed. However, for small wave vectors, and consequently
for small velocities, the energy band function is often approximated locally
by a parabolic function via the effective mass approximation, for analytical
purposes. The collision integral Q(f) on the right-hand side of (2.1) is given
by

Q(f)(x,k,t) = JS(k,k')f(l - /) - S(k',k)f{\ - /')d/c', (2.3)
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where the notation

f = f(x,k,t), f' = f(x,k',t) (2.4)

is used. The collision integral Q(f) models the interaction of electrons with
the crystal lattice. These interactions include scattering with crystal impur-
ities and acoustic and polar optical phonons (the vibrations of the lattice).
A more complicated collision operator Qee is used to model the interaction
of electrons with each other. The electron-electron collision operator is of
the form

Qee(f)(x,k,t) =

Q (V h1 hf \c h \ f /*> (~\ ff\(~\ ff\ rib-, Ale1 Ah1 (0 K\
O g g I X , f t j r i i 5 fV) A-} M J l l - I — j I \ J- — J 1 ) U . M / 1 L l /v (J.*vi f \&.O t

where / = f(x,k,t), f = f(x,k',t), h = f{x,kx,t), and /{ = f(x,k[,t).
However, other than in gas dynamics, particle-particle scattering is a rather
rare event in most semiconductor devices and the operator Qee is rarely
used.

Conservation and equilibrium
There are two important features of the collision operator Q that need to be
reflected by any numerical method, namely conservation and the existence
of a thermal equilibrium. A quantity g(k) is said to be conserved if

g(k)Q(f)(x,k,t)dk = O (2.6)

holds for any density function / . For reasons of symmetry g(k) = 1, the num-
ber of particles, is obviously conserved by all collision operators. The second
property is the existence of a thermal equilibrium, namely a density func-
tion fe such that, because of the principle of detailed balance (Markowich,
Ringhofer and Schmeiser 1990),

S(k, k')f'e(l - fe) = S(k', k)fe(l - f'e) (2.7)

holds. The thermal equilibrium density fe is given by the Fermi-Dirac
density function

where ep is the Fermi energy, ks is the Boltzmann constant, and T denotes
the lattice temperature of the crystal. The principle of detailed balance (2.7)
implies the relation

,k') = M(k)s(k,k'), M W = e x p ( ^ $ ) (2-9)
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for the scattering rate 5, where M is called the Maxwellian distribution and
s is symmetric in the variables k and k', so s(k,k') = s(k',k) holds.

Low density and relaxation time approximations
In order to derive simplified models from the Boltzmann equation (2.1), it is
often necessary to make simplifying approximations to the collision operator
Q. The first approximation is to assume the density function / to be small,
and therefore to drop the quadratic terms in the collision operator Q in
(2.3), giving the linear operator

Q(f)(x, k,t) = Js(k, k')f - s(k', k)f dk>. (2.10)

Next, it is assumed that the density function / is close to a Maxwellian
distribution of the form

(=£ffi) / (£ f f i ) t (2.u)

Replacing / ' in the linear collision operator (2.10) by the expression (2.11)
gives

Q(f) {x, k, t) = ^ y (n(x, t)M{k) - / ) , (2.12)

with

———=[ s(k',k)dk', n(x,t) = [ f(x,k,t)dk, (2.13)

and

The term T(X, k) is called the relaxation time.

Collision frequency, mean free path and scaling
One of the most important quantitative parameters determining which model
to choose is the mean free path. The mean free path is given by the shape of
the scattering rate s(k, k') and the the energy band function e. If we define
the collision frequency u> by

u(k)= f M(k')s(k',k)dk', (2.14)

then a;"1 is the average time an electron travels freely before undergoing a
collision event. Scaling the velocity wave vector relationship

v(k) = \vke{k) = vov (j£j , (2.15)
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where VQ and &o are chosen such that v(k) is an O(l) function, the expression

Ao = - (2.16)

gives the average distance an electron travels between collision events. If we
now scale the position variable x by the device length L, the wave vector
k by ko and the time by 7 = UJQL2/VQ, we obtain the scaled Boltzmann
equation

\2dtfs + Xdivx(v(k)fs) - Adivfc(Eaf8) = Q(fs) (2.17a)

QUs) = f dk 8a(Mafa(l - fs) - M'JS{1 - f's)), (2.17b)

where x, k and t are now dimensionless and the scaled field and scattering
rate Es and ss are given by

7-./ .\ vo/ifco /a; £ \
E(x,t) = —j—Es[T,-\

L \L 7/k k

M(k) = Ma(J~y (2.18)

and A = Xo/L is the Knudsen number, the ratio of the mean free path
and the size of the simulation domain. To what extent macroscopic models
provide an accurate transport picture depends mainly on the size of the
Knudsen number A. In the limit for A —• 0 one obtains from the Hilbert
expansion (see Markowich et al. (1990)) that fs = n(x,t)Ms(k) + O(X)
holds, where the macroscopic electron density n satisfies the drift—diffusion
equation

dtn - divx (DVxn - mEsn) = 0. (2.19)

(We will drop the subscript s from now on.) Through miniaturization,
the device length L decreases, and through the use of materials such as
gallium arsenide, the mean free path Ao increases, making the drift-diffusion
system less and less valid. Current state-of-the-art technology for devices
like MOSFETs works with values of A = O(0.1), which makes simulations
based on alternative models necessary.

Boundary conditions for the semiclassical Boltzmann equation
For the simulation of an actual device, the simulation domain will con-
sist of a bounded region Q, whose boundary dQ is made up of segments
dSlc, dQi, dQ,a, corresponding to contacts, insulating surfaces and artificial
boundaries, introduced to limit the size of the simulation domain. At con-
tacts, the inflow of electrons according to a certain given distribution fc is
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prescribed. At insulating surfaces we usually prescribe a specular reflection
condition, and at artificial surface segments zero influx is required. The situ-
ation will be somewhat more complicated in the quantum case (see Section
4.1). So altogether we have

fix,
fix,
fix,

on
k,t)
k,t)
k,t)

= dilc
= b(x,
= 0
= fix,

Ud

t)fc

-k .*)

for

for

for

X

X

X

G dQc,

eona,
G 5J7j,

it-

Ar-

iz <

v <

v <

CO

CO

CO,

(2.

(2-

(2

(2-

20a)
20b)

.20c)

20d)

where v denotes the outward normal vector on the boundary dfl. The
function fe(x, t) in (2.20b) gives the amount of electrons injected. Assuming
that the device is part of a circuit, b is given by Ohm's law.

The Poisson equation
The electric field E is, in general, derived from Maxwell's equations. However,
since we operate in a regime where the speed of light can safely be set to
infinity, Maxwell's equations become

divx(eDE) = p, VxxE = 0, (2.21)

where ED denotes the dielectric constant of the material. The charge density
p is given by p = e(iV£> — NA — n), where e is the unit charge and No and
NA are the pre-concentrations of donor and acceptor atoms in the crystal,
due to doping. Here n is the spatial density of free electrons, given by the
zeroth order moment of the density function / in the Boltzmann equation.
Introducing the potential V by E = — VXV, we obtain the Poisson equation

div E) = e(ND-NA-n), E = -VXV, n=[ dk n. (2.22)

The Poisson equation (2.22) is coupled to the Boltzmann equation (2.1) via
the charge density n in (2.12), and therefore the two equations have to be
solved simultaneously. A bias is applied to the contacts of the device by
prescribing a potential difference between the contacts, that is, by setting
V at the boundary segments corresponding to contacts.

2.2. Quantum transport models

As device dimensions decrease, quantum mechanical transport phenomena
play an increasing role in the function of devices. It is therefore necessary
to develop simulation models that are capable of describing these effects.
These models are a generalization of the classical models in the sense that
they reduce to the Boltzmann transport picture in the classical limit, that is,
when an appropriately scaled form of the Planck constant tends to zero. The
quantum mechanical description of the motion of an electron in a vacuum
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under the influence of a potential field is given by the Schrodinger equation

h2

AipeVip, (2.23)
2m

where tp denotes the wave function and V denotes the potential. The oper-
ator H is called the quantum Hamiltonian. The electron density n and the
electron current density J are then given by

n=\ip\2 and eJ = — Im(ipVif)). (2.24)
m

In order to describe transport in an actual device, several features have
to be added to the above transport picture.

• An ensemble of Schrodinger equations must be considered in order to
model the mixed state of an electron.

• The electron is moving in a crystal and not in a vacuum.
• Collisions, representing the interaction of the electron with the crystal

lattice, have to be modelled.
• The system has to interact with the outside world via boundary con-

ditions at device contacts and insulating surfaces.

Several steps are taken to achieve these goals. Some are mathematic-
ally precise, whereas some are purely phenomenological. First, the density
matrix for mixed states of the form

p(r, s,t)=J2 <r(uj)il>(r, *)>(*, *) (2-25)
j

is introduced, where each of the wave functions tpj satisfies the Schrodinger
equation (2.23). The density matrix p then satisfies the quantum Liouville
equation

= (Hs - Hr)p = A-(Ar - As)p + e(V(r) - V(s))p, (2.26)

and the electron and current densities n and J are given by

ih
n(x,t) = p(x,x,t), eJ(x,t) — — (Vrp - Vsp)(r = x,s — x, t). (2.27)

ZJ l i t

In order to relate the quantum picture to the classical picture it is convenient
to introduce the Wigner function (Wigner 1932)

w(x, k, t) = (2TT)-3 J^ dr]P(x+ l-r,, x - ^r,, ?j e^k, (2.28)

which then satisfies the Fourier transformed version of the quantum Liouville
equation, often referred to as the Wigner equation

ft ie / 1 \
—k-Vxw+-6V[x,-Vk)w = 0, (2.29)
m n V 2i J
m
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and the electron and current densities are given by

n(x,t) = [ dkw, J(x,t) = —f dk kw, (2.30)

and the operator 8V (x, (l/2z) Vfc) in (2.29) is defined in the sense of pseudo-
differential operators (Taylor 1981) as

6V\x,—Vk)w(x,k,t) =

(2TT)-3 / dr] f dk' 6V (x, -ri) w(x,k1,t)eir><k-k'^,
JR3 JR3 V 2 /

where 6V [x, -rj\ = V (x + -rj) - V (x + -rjJ . (2.31)
\ 2 / \ 2 / \ 2 J

The advantage of the Wigner formulation lies in the fact that it relates
the quantum mechanical picture to the classical picture. For quadratic po-
tentials V, the Wigner equation (2.29) reduces to the Boltzmann equation
without collision terms. It can be shown (Markowich and Ringhofer 1989)
that the Wigner function converges to the solution of the collisionless Boltz-
mann equation in the limit of large time and spatial scales. However, from
the point of view of device simulation, we are interested in quantum trans-
port equations in regimes which are quite far away from the classical picture.
Here, the advantage of the Wigner equation lies in the fact that it allows for
a more phenomenological treatment of collision terms and boundary condi-
tions. Clearly the Wigner equation (2.29) is the quantum equivalent of the
Boltzmann equation with a parabolic band structure (2.2), since the starting
point was the quantum Hamiltonian for a vacuum. In order to describe the
motion of the electron in a crystal, a modified Hamiltonian of the form

H = - ^ - A x - e{VL + V) (2.32)
2m

has to be considered, where VL denotes the potential due to a periodic crystal
lattice (Ashcroft and Mermin 1976). So

VL(x + -yzj) = VL(x), j = 1,2,3 (2.33)

holds, where the Zj are the lattice directions and 7 is the length scale of
the lattice, chosen such that det (Z) = 1, where Z = (z\, z?, z%). It can be
shown by using a Bloch wave decomposition (Arnold, Degond, Markowich
and Steinriick 1989, Poupaud and Ringhofer 1995, Markowich, Mauser and
Poupaud 1994) that the projection of the wave function onto the mth energy
band satisfies the Schrodinger equation

T (2.34)
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where em(k) is the mth eigenvalue of the Hamiltonian HL = —(h2/2m)A +
VL together with quasi-periodic boundary conditions. Here B denotes the
Brillouin zone, the unit cell of the dual crystal lattice defined as B =
Z~T[—vr/7, TT/7]3. Performing the Wigner transformation for the mixed state,
as before, now gives the Wigner equation in a crystal of the form

+ div

^SV (x, ^V f c ) w = 0,

where all functions are now periodic in the wave vector k on the Brillouin
zone B and Fourier transforms and pseudo-differential operators are appro-
priately reformulated as

v(k) = y^ v(m) exp
m

(x,k,t) = (2.36)

2-\ Y I dk' 6V (x,lZn)w(x,k',t)exp(ij(k - k'fZn).
^J „ -/B V 2 /

Since the length scale 7 of the crystal lattice will be small even for quantum
mechanical simulations, the formal limit 7 —> 0 is used in equation (2.35)
for actual simulations giving

ie / 1 \
dtw + divx(v(k)w) + -6V x, — Vfc )w = 0. (2.37)

h \ ii J

In the limit 7 —> 0, the Brillouin zone becomes infinite and the definition of
Fourier transforms and pseudo-differential operators reverts to (2.31).

Modelling the scattering processes of electrons with phonons quantum
mechanically is a much more complicated task. Most models lead to equa-
tions which are too high-dimensional to be actually used in the simulation
of devices (Ferry and Grubin 1995). Therefore, we are in practice reduced
to two approaches to formulating the quantum Boltzmann equation

ie / 1 \
dtw+divx{v{k)w) + 6[V}w = Q(w), e[V}w = -6V[x,-Vk)w, (2.38)

n \ 2,1 /

namely the relaxation time model and the Fokker-Planck term. The relax-
ation time model is, as in the classical case, given by

Q(w) = - { — w 0 - w ) ,

i(x,t) = / dk w(x, k,t),
JR3
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no(x) = f dkwQ(x,k), (2.39)

where wo(x, k) denotes the quantum mechanical thermal equilibrium density,
the quantum equivalent to the Maxwellian. The Fokker-Planck term model
is given by

Q(w) = X- div k (?~VkW + kw^J , (2.40)

where To denotes the lattice temperature.

Thermal equilibrium
To carry out actual simulations it is necessary to compute a quantum mech-
anical thermal equilibrium solution. This is necessary for two reasons. First,
the thermal equilibrium solution wo is used in the relaxation time approxim-
ation (2.39). Second, transient simulations are started by using the thermal
equilibrium as initial datum. For a mixed state, the thermal equilibrium
density matrix is defined by

pTE(r,s) = Y^aiLJjWjirtyjis), (2.41)

where the ipj and lj are the eigenfunctions and eigenvalues of the quantum
Hamiltonian and cr{uj) is the statistical distribution. For Boltzmann statist-
ics, a is of the form U(UJ) = exp(—OJ/TQ).

3. Numerical methods for semiclassical and classical
transport

In this section we describe two types of approaches to simulating semicon-
ductor devices based on the semiclassical Boltzmann equation (2.17). Both
approaches are more or less restricted to the case of parabolic band struc-
tures, so (2.2) is assumed. A relatively easy generalization is to assume a
more general quadratic band structure of the form e(k) = (h2/2m)kTZk
with a positive definite symmetric matrix Z. This corresponds to a Taylor
expansion of the band energy e for small wave vectors k and leads to the
so-called effective mass approximation. Since generalizing the presented nu-
merical methods to this case is straightforward, it will not be considered
separately here. The discussed methods cannot be expected to represent
the physical transport picture as accurately as a complete Monte Carlo sim-
ulation in all possible cases. They have, however, the great advantage of
dealing with deterministic computational models that possess a well defined
steady state. At the same time, they seem to give a reasonably accurate
transport description for current device dimensions, as verified by compar-
isons with experiments and Monte Carlo calculations.
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3.1. Series expansion methods

Series expansion methods for the Boltzmann transport equation have the
advantage that they give, in some sense, a direct extension of macroscopic
models such as the drift-diffusion system and the hydrodynamic system, to
be discussed in the next section. Usually a spectral Galerkin approach is
used in the wave vector direction, while some other standard finite difference
or finite element discretization is employed in the spatial and time directions.
Most series expansion methods assume a parabolic band structure (2.2).
So, after an appropriate scaling, the wave vector can be identified with the
velocity vector. We will discuss series expansion methods on the scaled
Boltzmann transport equation

X2dtf + Xv • Vxf - \E • Vvf = Q(f), (3.1)

where A denotes the Knudsen number, the ratio of the mean free path to
the length scale of the simulation domain. Most expansion methods for the
Boltzmann transport equation use the assumption of isotropic scattering,
that is, that the scattering rates s(v, v') in (2.3) as well as the Maxwellian
depend only on the energy e. So, after scaling, and assuming a parabolic
band structure, the collision integral Q(f) in (3.1) and the Maxwellian are
of the form

Q(f)(x,v,t) = J^dv {s(\v\,\v'\)(Mf'(l- f)-M'f(l -

M{v) = exp ( — ^ ) . (3.2)

One of the drawbacks of series expansion methods is that the evaluation
of the collision integral is quite complicated and expensive if no Monte Carlo
approach is used. The dependence of the integral kernel on the energy alone,
reduces the complexity of this problem considerably once polar coordinates

v = (rcos8,rsmdcos(/),rsm6sm(f))T,

where 0e[0,n], </> G [-7r,7r], r e [0 ,oo ) , (3.3)

are used. In polar coordinates, the collision integral Q then becomes

Q(f)(x,r,0,</>,t) = (3.4)
/"OO I-K C-K . .

J dr'J dd'J dcfr'r'2sm(e)s(r,r')(Mf'{l-f)-M'f(l - / ' ) ) ,

and the integration over the angular variables can be carried out explicitly,
giving

/•OO . .

Q(f)(x,r,0,<f>,t)= / dr>rl2s(r,rl)(MF'(l-f)-M'f(4n-F')), (3.5)
Jo

where F(x, r, t) denotes the average of the density function over spheres of
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equal energy

F(x,r,t)=[ d0 / d(f> sm(9)f(x,r,0,(f>,t), (3.6)
Jo J-n

and again the terms / ' and F' mean that the corresponding functions are
evaluated at (r',9',(f)') rather than at (r,9,(f>). The advantage of the use
of polar coordinates lies in the fact that the collision integral is now one-
dimensional and the collision terms for scattering of acoustic and polar op-
tical phonons, whose scattering rates are of the form

s{r,r') = £ l(\j\)S(r2 - r'2 - juph), (3.7)

with ujph the energy of emission/absorption of a polar optical phonon, amount
to pointwise evaluation of F. The Boltzmann transport equation in polar
coordinates takes the form

X2dtf + Am • V x / - XE • (adrf + bdef + cd+f) = Q(f), (3.8)

where

1 I cos 9 \ 1 / - s i n 0 \ 1 / °
a = -v = I s in9cos6 I , b= - \ cos9cos</> I , c = —:—- I — sin<j>

\ sin 9 sin <j>) \ cos 6 sin <f> ) \ cos 4

Starting with Odeh, Gnudi, Baccarani, Rudan and Ventura (Ventura,
Gnudi and Baccarani 1991, Ventura, Gnudi, Baccarani and Odeh 1992), and
continuing with the work of Goldsman and Prey (Goldsman, Wu and Prey
1990, Goldsman, Henrickson and Prey 1991), spherical harmonic expansions
of the Boltzmann transport equation in polar coordinates have been used
with great success, meaning that good agreement with Monte Carlo simu-
lations has been achieved for realistic devices using only a relatively small
number of terms. We recall that spherical harmonic functions take the form

Sn(9,<fr) = Ln(cos9)(sm9)n2exp(in24>), n = (m,n 2 ) , (3.9)

where Ln is the associated Legendre polynomial of degree (ni, n2). Thus Ln

is a polynomial of degree n\ satisfying the orthogonality relation

C Lni,n2(2/)L,1,n2(y)(l - y2)"2 dy = ^-6{m - Vl), (3.10)
J-l 27T

and consequently the spherical harmonics satisfy

fn d(f> r d9sm(9)S^(9,cf>)S1/(9,<t)) = 6(n - u). (3.11)
J-n Jo

Expanding the density function / in spherical harmonics gives

<?,</>), (3 .12)
n£N
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where N denotes some suitable index set, and using the standard Galerkin
approach, we find

A Otjn + ^MmmOi./m ~ -C/i \AinmOrJm + tiinmjm) ~ Qn-i (o.lo)

where the summation convention is used in (3.13) and the coefficients Ainm

and Binm(r) are given by

Ainm = r d6 r dcf) sm(6)SnaiSm, (3.14a)
JO J--K

Binm = r d9 r d<f> sm(e)Sn(bideSrn + Q^5m) (3.14b)
JO J-1T

qn = / dr'r'25(r,r')
Jo
(MfQ (47T«(n) - V^fn) - M'fn (ilT - V ^ / Q ) ) .(3.14C)

Stability and discretization
Equation (3.13) represents a hyperbolic first-order system in the spatial
and time variables (x,t) and the energy variable r = \v\. In principle, the
system (3.13) could be discretized by any number of methods suitable for
hyperbolic systems. In Ventura et al. (1991) and (1992), standard finite
differences are used in all variables. However, in addition to exhibiting
the usual stiffness of PDE discretizations, (3.13) is extremely stiff in time
close to the drift-diffusion regime, for small values of the Knudsen number
A, and in space for large values of the electric field E. It therefore pays
to investigate the stability properties of the system (3.13) before writing
down any approximation scheme. We will now give a simple linear stability
estimate, first derived by Poupaud (1991), which indicates how to discretize
the system in the spatial, time and energy variables. The Galerkin approach
implies the equation

2 I 6.0 I d<£ sin(6)fN (3.15)
JO J-TT

(\2dtf
N + At; • Vxf

N - XE • (adrf
N + bdef

N + cfy/") ~ Q(fN)) = °-

Integrating (3.15) by parts yields

X2dtG

+ P dOP dcf> sin(0)A (diVa; (vfm) -E-adr (fN2))

+fN2E • (de(bsme) + fy(sin0c)) - 2fNQ ( /") = 0, (3.16)
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where

G(x,rtt) = r d6 f d</> sm(9)fN2 = £ fn(x,r,t)2 (3.17)
Jo J-* ntN

is the norm of the coefficient vector (fn).
Because of the properties of polar coordinates, we have

de(bsm9) + d (̂sin0c) = -2^^-a, (3.18)

and (3.16) can be rewritten as

X2dtG

+ r d6 r dcj) sin(0)A (divx (vfN2"j - E • a\dr ( r2 /^2))

-2fNQ (fN) = 0. (3.19)

Using the scaled Maxwellian M(r) = exp (—r2/2), the term r~2dr(r
2fN2)

can be rewritten as r'2dr(r
2fN2) = (M/r2)dr((r

2/M)fN2) - rfN2 and,
since v = ar and E = — VXV holds, we have

E • a^dr (r2f»2) = E • a^dr ^ f ^ j + VXV • vf»2. (3.20)

Thus equation (3.16) can be written in conservation form as

X2dtG

(e~vdWx (e
vvfN2) - E • a^dr (^

-2fNQ(fN) = 0. (3.21)

Next, we note the following basic identity for the linearized collision op-
erator Q(f) = /R3 dvs[Mf - M'f}:

2 r d9 [W dcf> sm(9)r2fQ(f)
Jo J-n

= - fn d9 r d<t> r d^ r W sm{9)r2sin(9')r'2sMM' (-?- - -(-]
Jo J--K Jo J—-K \M M /

< 0, (3.22)

which can be verified by direct calculation. Therefore, multiplying (3.21) by
evr2/M and integrating with respect to x and r gives

dt ( dx f°° dr e-vT-G(x,r,t) < (3.23)
JQ JO M

- dx dr(dtV)e-v--G(x,r,t)-^ / dr—e-y{v • v)fN2,
Jo. JO M A Jan Jo M
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where v denotes the unit outward normal vector of the domain Q. The
second term on the right-hand side of (3.23) has to be controlled by the
boundary fluxes and (3.23) yields a Gronwall inequality for the term

dx dr --e-vG(x,r,t) = £ / dx / dr — e - y / n (z , r , i ) 2 .
Jo, Jo M neN-'V -*0

(3.24)
The significance of the estimate (3.24) lies in the fact that it is independent

of the Knudsen number A, and therefore is a valid stability result even in the
stiff case close to the drift—diffusion regime. Therefore, the discretization of
the hyperbolic system (3.13) in the x,t and r variables should reflect this
estimate. Without going into the explicit details, we will now show how
to construct the discretization for system (3.13). Because of the equality
(3.18) the matrices Ai and Bi, made up of the coefficients Ainm and Binm

in (3.13), satisfy

Bi + B? = -Ai, i = 1,2,3, (3.25)
r

and, consequently, the matrices Bi — (l/r)Ai are skew symmetric. In the
linear case the terms qn on the right-hand side of (3.13) are given by a matrix
integral operator of the form

In = 2^ Cnmfm, (3.26)
n€7V

/*OO , .

where Cnmg(x,r,t) = Air I dr' r'2s\8(n)8(m)Mg - 6(n - m)M'g),

and, because of (3.22), the matrix operator C satisfies

I oo .̂2

dr — fJ Cf < 0, (3.27)
o M

where f denotes the vector of coefficients (/n)- The stability estimate for
the semi-discretized Boltzmann transport equation suggests rewriting the
system as

A2 (dt (e-V'H) + I {dtV)e~v'H) + \rAtdXl (e^'H) + (3.28)

£ (Me~v) V2 EiAidr (rM-'/H) + Xe-^Ei {B, - U ) f = e

Multiplying (3.28) from the left with (r2/M)e~v/2fT and integrating with
respect to x and r gives the stability estimate

r poo ^.2 /• /•oo ~*2

dt dx dr ^e-v\{\2 = - dx dr (dtV)e-v\f\2. (3.29)
Jn Jo M Jci Jo M
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Therefore, any difference discretization of the system (3.13) should build
on differencing the terms e~v'2f in the spatial and rM^ '^ f in the energy
direction. A completely time-implicit scheme for (3.13) would immediately
reproduce the stability estimate (3.29). Unfortunately, completely time-
implicit schemes are usually too computationally expensive. From (3.28)
it is clear, however, that at least the collision term on the right-hand side
should be discretized implicitly in time in order to reduce the O(A2) stiffness
of the system to O(X). So, system (3.13) should be discretized as

*?dtfn -Qn = Ar exp ( — ) AinmdXi (exp ( - — ) fm ) - (3.30a)

XEt ^M1/2 'Ainmdr (rM-l/2fm) +

1 /*oo

Qn = £ 7(tf I) / dr' r'26(r2 - r'2 - juph) (3.30b)
i=-i Jo

(Mf'Q (47r«(n) - V&fn) ~ M'fn (4TT -

where the terms on the left-hand side are taken implicitly, and a standard hy-
perbolic scheme, such as Lax-Wendroff, is used on the right-hand side, yield-
ing a Courant-Friedrich-Lewy (CFL) condition of the form At/(AArc) <
const. In the case of a linear collision operator (1 - / « 1 in (3.30b)), if
the mesh size in the energy direction is taken as an integer fraction of the
energy u>ph of the emission of a polar optical phonon, the collision operator
C becomes a sparse matrix whose LU decomposition can be computed once
and reused for every grid point in the x-direction (Ventura et al. 1991,
1992). An alternative to this approach is to use a spectral discretization
in the energy direction as well. In order to preserve the stability estimate
(3.23), it is necessary to use the function r2/M as a weight function for
the scalar product. This approach has, in principle, been used in Schmeiser
and Zwirchmayr (1995) and (1997), although there, Cartesian coordinates
in v and Laguerre polynomial basis functions are used. Consequently, the
matrix collision operator matrix C becomes a full matrix and the scheme is
restricted to relatively few terms in the expansion.

3.2. The hydrodynamic model

The series expansion methods described in the previous section are centred
around an almost spherically symmetric density function. Although they
present a non-perturbative theory and are always convergent, we can expect
slow convergence far from equilibrium, that is, in the case of large group
velocities. As device dimensions decrease, the value of the Knudsen number
A increases, and the transport picture is not dominated by the collision
term any longer. In order to study ballistic transport in short channels of
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a transistor, an alternative model is used. This model corresponds to the
compressible Euler equations for a gas driven by an external force. This
model, not very aptly named the 'hydrodynamic model for semiconductors',
is obtained by taking moments of the Boltzmann equation with respect to
the wave vector k, corresponding to the macroscopic particle density, the
group velocity and the energy. The hydrodynamic model usually assumes
a parabolic band structure as given in (2.2). Multiplying the Boltzmann
transport equation (2.17) by l,k and \k\2 and integrating with respect to
the wave vector k gives the moment equations

X2dt (1) + XdXl (hi) = 0, (3.31a)

X2dt (kj) + \0Xl (kikj) + XEj (1) = ( y W ) ) > (3.31b)

(3.31C)

where the symbol (•) denotes the expectation of a quantity with respect to
the density / . So

>= f dk (gf) (3.32)
V/K 3

holds and the summation convention is again used in (3.31). (3.31) is re-
garded as a system for the particle density n = (1), the moment (k) = nv
and the total energy W = ((l/2)|fc|2). The so-called closure problem is then
given by expressing the higher order moments kjki, ki\k\2 and the moments
of the collision operator Q in terms of the primary variables n, v and W. This
is achieved by the assumption that the density function / is approximately
equal to a displaced Maxwellian of the form

/(*, k, t) « fa, t) exp f - ^ = ^ * ) , (3-33)

where v denotes the macroscopic velocity and T the electron temperature.
Under assumption (3.33), the higher order moments are of the form

(A;) = Xnv, (kjki) = n(T6ji + X2vjvl), (3.34)

\ ^ A>|2), {kt\k\2) = \vm±(5T + X2\v\2),

and (3.31) can be written as

dt (n) + dXl (vin) = 0 (3.35a)

X2dt(nvj) + X2dXl(nviVj) + dXj(nT) + Ejn = /^-Q(f)\ (3.35b)
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dt W + dXl (vtW) + dXl {nviT) (3.35c)

+\EiVin- divX(KVXT) =

Here the term divx(«VxT) denotes the heat flux which is derived from a
higher order perturbation theory, and K denotes the heat conductivity. The
moments of the collision terms are modelled phenomenologically as

(3.36)

(see Baccarani and Wordeman (1985)).
Note that, for A —> 0, the transport terms in (3.35) vanish and T = To

holds. Thus the drift-diffusion system is recovered in the limit. However,
the hydrodynamic model is used in regimes where the active region of the
device is of the same order as the mean free path and A = 0(1) usually holds.
For K = 0, neglecting the heat flux, the hydrodynamic model represents a
nonlinear hyperbolic system with sound speed c = (1 /A)Y / 5T/3 which will
usually exhibit shocks for A = 0(1). For finite values of the heat conductivity
K, these shocks will have a finite width of order O(K) (Gardner 19916). For
short and relatively small active regions (of the order of 0.1-0.5//m) the
hydrodynamic model equations (3.35) usually lead to a sufficiently good
agreement with Monte Carlo simulations (Gardner 19936).

Steady state calculations
The most common approach to discretizing the hydrodynamic model equa-
tions in steady state is upwind box integration (Gardner 1992, Gardner
1991a). To this end, the steady state version of the model equations (3.35)
is put in conservation form as

dXl (vidj) + Hj = 0, j = 0, . . . , 5, (3.37)

where the Gij and Hj are given by

= n and Gtj = \2nvj, j = 1,2,3, (3.38)

\2)~ndx.V, G/5 = 0,

Ho = 0, Hj = 6Xj (nT) - ndXj V - -nVj, j = 1,2,3,
Tp

HA = -V* • (KVXT) + —±— (3(T - To) + A2M2),

and H$ = — divx(eVxV) = n — D,
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where we have already included the Poisson equation for the potential V.
Using the upwind box integration method, the terms dXl(viGij) in (3.37) are
discretized by

(3.39)

where the discrete difference and averaging operators 8\ and m are defined
by

Stz(x) = z(x + -Axlel)-z(x--Axlel),
\ z j \ z j

= - (z (x+-Axlel) + z (x --Axieijj , (3.40)

where Axi denotes the (variable) stepsize and e/ denotes the unit vec-
tor in the Zth coordinate direction. The derivatives in the terms Hj in
(3.37) are usually discretized by standard centred finite differences (Gard-
ner 19916, Gardner 1992). In order to deal with locally large electric fields,
a modification of the Scharfetter-Gummel scheme (Selberherr 1981) may be
used for Hj,j = 1, 2, 3. In this modification the derivative

= dXj {nT) - ndXj V --Vj (3.41)
Tp

is written as

/V\ z ( p ( - K ) j / \ nH' - -d" © ^ H ? ) ) "nVd"(l(|r|))

The derivatives in (3.42) are then discretized by using standard differences.
For constant temperature T the discretization of (3.42) then reduces to the
classical Scharfetter-Gummel scheme, which has the advantage of correctly
performing the right upwinding in the direction of the electric field E =

-vxy.
After carrying out the discretization, a large sparse nonlinear system of

algebraic equations has to be solved. After linearization this leads to the
solution of the linear system

-F(z), z = (n,v,T,V)T, (3.43)

at each step. Here the vector F denotes the discretization of (3.37) on the
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mesh and the Jacobian J has the block structure

J =

dF0
dn
dF^
dn
dF4
dn

dn

dv
dFj
dv

dFi
dv

0

0

~Wr
dFi
dT

0

0
dFj
dV

oFd

wdFQ
dV

(3.44)

In Lanzkron, Gardner and Rose (1991) and Gardner, Jerome and Rose
(1989), detailed investigations of the convergence of block iterative methods
for the solution of the Newton equations (3.43) have been carried out. The
basic result is that block under-relaxation methods, in conjunction with
conjugate gradient methods for the individual blocks, perform well as long as
the equations for the density n and the velocities v are treated as one block.
In this case chaotic under-relaxation methods on parallel architectures also
give good results.

3.3. Generalizations of the hydrodynamic model - Grad systems

The relative simplicity of the hydrodynamic model equations and their cer-
tain shortcomings, such as the overestimation of velocities close to P-N junc-
tions (see Ringhofer (1997)), suggests a generalization of the underlying prin-
ciple to higher order moment methods. In the ballistic regime, that is, in
the presence of large electron velocities, series expansion methods based on
a perturbation of a spherical symmetric density function will in general not
perform well. This suggests the introduction of a modified series expansion
approach based not on a centred Maxwellian distribution function but on
a wave vector displaced Maxwellian instead. This idea was first introduced
by Grad (1949, 1958) for the study of the fine structure of shock waves in
fluid dynamics. Since the assumption underlying the hydrodynamic model
is that the density function is approximately of the form (3.33), it is nat-
ural to expand the Boltzmann equation around a Maxwellian distribution
function in a stretched variable coordinate system in wave vector space with
the macroscopic velocity u as the origin and the square root of the macro-
scopic temperature T as the stretching factor. Introducing the coordinate
transformation

(x,v, t) —> (x, w,t), v = a(x,t)w + u(x,t) (3.45)

gives the transformed Boltzmann equation

X2dtf + \v • Vxf - -H • Vwf = Q(f) (3.46)
a

H = E + X((dta)w + dtu) + ( w(Vxa)T + ~ ) v, v =
V ox)
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Equation (3.46) is now approximated by a Galerkin method in the micro-
scopic velocity variable v where a and u are still kept as free parameters.
There are two conditions which we have to place on the choice of basis
functions and the scalar product in order to obtain a generalization of the
hydrodynamic model.

• The lowest order basis function is the displaced Maxwellian e"'™' I2.
• The Galerkin approach should correspond to taking the moments of

the Boltzmann equation (3.46).

This is achieved by choosing basis functions of the form

/ \w\2\

ipm = M(w)pm(w), M(w) = expl -!-£- I , (3.47)

where the pm in (3.47) are vector basis polynomials containing the polyno-
mials l,to and |ii;|2. So

{l,w,\w\2} C span{po,---,PAf} (3.48)

holds. Secondly, the scalar product is taken to be of the form

<f,9>= JR3 dw J^TfT9- (3.49)

Thus, taking the scalar product of the Boltzmann equation with the basis
function ^ m corresponds to integrating against the polynomial pm, and the
moments leading to the hydrodynamic model are reproduced. Expanding
the density function

w) (3.50)

and using the Galerkin procedure yields the system

A dtfm + ^dXl[Almnfn] H Bmnfn = Cmnfn, (3.51)

with

Almn = (il>m,Vlil>n) ,

Bmn = ~ (4>m, divw(Hi/jn)) = dw 1pnH • Vwpm,
JR3

Cmn = (il>m,Qii>n). (3-52)
It remains to choose the parameters a(x,t) and u(x,t). In the original

Grad system (Grad 1949), they are chosen to correspond to the square root
of the temperature and the group velocity:

_ /R3 d^ vf . |2 2 _ /R3 di; \v\2f
u ——z - —, it -f- aa ——j. - - ,

/RS dv / /K3 dv f
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which implies

/ dw [wf] = 0, f dw [\w\2 - 3 ] / = 0. (3.54)

If we denote the basis functions M, w\M, W2M, W3M, \w\2M by ipo,..., ^4,
this becomes

fj = 0, j = 1,2,3 and /4 = const /0. (3.55)

Thus / 1 , . . . , fi can be eliminated from the system and the corresponding
equations determine the free parameters a and u. By virtue of construction
the system reduces to the hydrodynamic model (without heat conduction)
if only the basis functions ipo,..., ^4 are used. One of the major problem of
Grad systems is that they are not necessarily well-posed. Equation (3.51),
together with the constraints (3.55), represents a hyperbolic differential al-
gebraic system. If the coefficient functions / i , . . . , / 4 are eliminated from
the system the resulting equations form a first-order system for the vari-
ables (/o, a, u\,U2, U3, f$...) whose linearization can have complex eigenval-
ues, and therefore modes can grow proportionally to their frequencies. This
ill-posedness occurs at quite moderate Mach numbers and has been analysed
by Cordier (1994a, 19946) for some special sets of basis functions. Several
approaches to remedy this problem have been given by Ringhofer (19946,
1994a, 1997). They involve relaxing the conditions (3.55) in some way or
another, and lead to well-posed problems.

4. Numerical methods for quantum transport

The numerical methods discussed in this section are essentially mirror im-
ages of the methods for semiclassical transport from Section 3. The quantum
Boltzmann equation (2.38) replaces the semiclassical Boltzmann equation
(2.1) and its moment expansion gives the quantum hydrodynamic model.
There are, however, several important differences which do not allow us to
treat quantum transport phenomena as just a perturbation of semiclassical
transport. First, the discretization of the pseudo-differential operator 6 in
(2.38) is not trivial. The transport term on the left-hand side of (2.38) does
not possess classical characteristics. (They would be replaced by the paths
in the Feynman path integrals.) Second, because of the nonlocality of the
transport operator, the formulation of proper boundary conditions is more
complicated than in the classical case. Finally, because of the dispersive
nature of the underlying Schrodinger equation, moment models, such as the
quantum hydrodynamic equations, will also be dispersive, that is, waves will
be able to travel at all speeds. Therefore, the artificial diffusion introduced
by a discretization scheme will play a crucial role in its accuracy.
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4-1- Discretization of the quantum Boltzmann equation

We now turn to the design of numerical methods for the quantum Boltz-
mann equation (2.38). There is a variety of possible choices for discret-
ization schemes in the spatial and temporal directions, which will be dis-
cussed in more detail later. The more fundamental problem is posed by
the discretization of the wave vector k, in particular by the approximation
of the pseudo-differential operator 0, the quantum equivalent of the oper-
ator —VXV • Vfc in the classical Boltzmann equation. Since the quantum
Boltzmann equation does not possess characteristics in the classical sense,
and the Wigner function w does not necessarily remain nonnegative (see
Tatarski (1983)), a Monte Carlo type approach becomes too complicated to
be practically feasible. On the other hand, since the operator 0 is defined
in terms of Fourier transforms, a spectral discretization using trigonometric
basis functions seems natural.

First we note that the quantum Boltzmann equation (2.38) allows for a
reduction in dimension. If the potential V is only dependent on the variables
x\,... ,Xd with d = 1 or 2 (so there is no field pointing in the direction
Xd+\, • • • ,£3) the quantum Boltzmann equation with both collision terms
(2.39),(2.40) allows for solutions of the form

w(x,k,t) = exp ( - - (kj+i H ^ H) ) w(xi,... ,xd,h,... ,kd,t). (4.1)

The dimensionally reduced quantum Boltzmann equation for w is then of
the form

dtw + k- Viw + 6[V]w = Q{w) (4.2a)

0[V}w(x,k,t) = (2vr)-d (4.2b)

I dk' dij — 6V I x, — r/,t) w(x, k, t) explir/ • (k — k') I,
jRd JKd h \ 2 J V /

w h e r e x — {x\,. . . , x d ) T , k = ( f e i , . . . , k d ) T •
Here we have already used the quantum Boltzmann equation in a scaled

and dimensionless form, where h denotes the scaled Planck constant H. Of
course, the Poisson equation has to be modified accordingly to take into
account the integral of the Maxwellian in the directions kd+i,... ,k%. Since
the reduced quantum Boltzmann equation has the same form as the three-
dimensional equation, we will from now on drop the tilde symbol. Following
Ringhofer (1990) and (1992), we approximate the Wigner function robya
trigonometric polynomial of the form

k), N = {-N + l,...,N}d, (4.3)
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( a\d'2
<t>n(k) = ^ ~ I exp(icm • k).

\2TTJ

Thus we approximate the L2 function w by the (2vr/a)-periodic function
and, consequently, a will have to go to zero in the limit to achieve con-

vergence. The quantum Boltzmann equation (4.2) is simply approximated
by collocation at the appropriate equally spaced nodes. So

+ k • VXWN + 0[V]WN = QN(WN) at k = kj, (4-4)

k3=f3j, jGN, 0 ^

holds. If the relaxation time approximation is used for the collision term Q
then the corresponding approximation QN has to be modified accordingly
to account for the fact that densities are now computed from periodic basis
functions. So, in this case,

QN(w)(x, k,t) = - ( — W O N - W ) , (4.5)

n= w, nQ= w0N, MN = V co{x,n)^n,
J{-K/a,n/a]<i J[-7r/a,n/a]d ^

holds. Here WON denotes a suitable approximation of the thermal equilib-
rium density wo- The advantage of this approach lies in the fact that the
highly oscillatory integrals in the definition (4.2b) of the pseudo-differential
operator 9 can be evaluated exactly. The basis functions 4>n satisfy the
orthogonality relations

(f)*m(t>n = S(m — n), j3 y ^ (f^ik^ifin^v) = 6N(ITI — n), (4.6)

where 6N denotes the Kronecker 6 on N periodically extended over all in-
tegers. Using these orthogonality relations, a direct calculation yields

,k,t) — y^ -6V(x,—n,t)c(x,n,t)(f)n(k),

c(x,n,t) = pdJ2<J>n(k»)wN(x,ku,t). (4.7)
I/6N

Collecting the function values of the trigonometric polynomial WN at the
collocation points kv into a vector W, one obtains the hyperbolic system

j = QW, (4.8)

where the Aj are diagonal matrices made up of the j th component of the
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collocation points ku, and the tensor B is given by

B(n, u)=(3dJ2 TW (X, ^n,t) tMPtiMP")- (4-9)
n e N " V z /

Multiplication with the tensor B can now be carried out using FFTs, a
significant advantage in higher dimensions.

Spectral accuracy
A complete convergence proof for the semi-discretized scheme can be found
in Ringhofer (1990) and (1992), and turns out to be quite tedious. We
will here only sketch the consistency of the discretization in order to indic-
ate under what conditions and with what order the scheme is convergent.
Note that the discretization scheme (4.8) is somewhat nonstandard. The
basis functions (j>n are not elements of the same space as the exact solution,
since we have approximated the L2 solution by periodic functions. Let the
interpolation operator P be denned by

Pw(x, k,t) = ^2 c(x,n, t)4>n{k), Pw(x, kv, t) = w(x, kv,t), v e N.

(4.10)
Then the scheme can be formally written as

P(dtwN + k • VxwN + 6[V]wN - QNwN^j = 0. (4.11)

Denning the global discretization error as e = w^ — Pw we obtain

P(dte + k- Vxe + Q[V]e-QNe) = L, (4.12)

where the local discretization error L is given by

L = -p(dtPw + k-VxPw + O[V]Pw-QNPw)

= (P6-9P)w + {QNP-PQ)w (4.13)

The interpolation operator P has the representation

Pf(k) = (3dJ2Yl f(ku)K(kv)Mk) (4.14)

and, consequently, the interpolant of any (27r/a)-periodic function / is given
by

Pf= E E f(n + 2Ns)<t>n, / = E hn)<t>n- (4.15)

The formula (4.15) represents the usual aliasing error. The exact solution
w is now smoothly decomposed into a part which vanishes identically outside
the interval [—Tr/a,ir/a]d and a part which vanishes identically inside a
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subinterval of [—n/a, 7r/a]d, that is,

w = Wi + wo, Wi = 0 for k <£ [ } d, }
a + e a + e

So wo denotes the tail of the distribution and u>i equals w in the smaller
domain. Clearly Wi is (27r/a)-periodic and, therefore, using (4.15),

(9P-P9)Wi = E E

Wi(n + 2Ns) (f)V(x, an, t) - 6V(x, an + 2Ns, t)\(j)n,

where wi = E ^i(n)<^n) (4-17)
nezd

holds. Note that the sum in equation (4.17) only contains Fourier coefficients
with indices larger than iV, and therefore

\\(9P - Pe)wi\\L2{[_^^]d) < CqWSVWooWwiWH^z^ (4.18)

holds, which gives the usual estimate for spectral accuracy of the discretiz-
ation scheme.

Time discretization
After employing the spectral collocation scheme in the wave vector direction,
it remains to discretize the first-order hyperbolic system (4.8) in space and
time. Of course, every method for hyperbolic systems would do this job.
However, the use of a standard hyperbolic scheme for (4.8) will result in
a CFL condition of the form At/(aAx) < const, which will be prohibitive
in practice since a —> 0 has to hold for the spectral discretization to be
convergent. The best alternative, given in Arnold and Ringhofer (19956)
is to employ operator splitting to the semi discretizeed equation (4.8). In
the operator splitting approach, one time step of length At for the equation
(4.8), starting from W(x,tn) is performed by

dtWi+Ajd^W! = 0, W1(x,t) = W(x,tn) (4.19a)
dtW2 + B(V)W2 = Q(W2), W2(x,tn) = Wi(Mn + At) (4.19b)

W(x,tn+1) = W2(x,tn+1), tn+1=tn + At. (4.19c)

This discretization is first-order accurate in time. A second-order accur-
ate discretization can be achieved with a slight modification using so-called
Strang splitting (Arnold and Ringhofer 1995 a) . The step (4.19b) repres-
ents the solution of a system of ordinary differential equations. This can be
achieved using any ODE integrator. (Actually, in the absence of the colli-
sion term Q, this step can be carried out exactly.) In theory, the first step
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(4.19a) could be carried out exactly as well, since it is given by the shift

Wi(x, kj,tn + At) = W(x - kjAt, kj,tn), (4.20)

eliminating any type of CFL condition. In practice, since the vector W
is given on a fixed mesh on the x-axis, the term W(x — kjAt,kj,tn) will
have to be interpolated between the nearest gridpoints. Using second-order
interpolation between nearest neighbours in the x-mesh and a first-order
ODE integrator for step (4.19b) gives a first-order accurate scheme (Arnold
and Ringhofer 19956).

Boundary conditions
One of the major problems in the application of quantum kinetic models to
the simulation of actual devices is the appropriate formulation of boundary
conditions. In a device, the simulation region will be a bounded domain
whose boundaries will consist of contacts, insulating surfaces or artificial
boundaries, which are introduced to limit the size of the simulation domain.
The quantum Boltzmann equation is nonlocal in the wave vector k and
the transport term on the left-hand side of (2.38) does not possess classical
characteristics. Nevertheless, the quantum Boltzmann equation allows for
wave solutions since, at least in the collisionless case, it is equivalent to
the Schrodinger equation. Thus, if care is not taken in the formulation of
boundary conditions, artificial reflections of waves at the boundaries will
occur, and these spurious waves will propagate back in the interior of the
simulation domain. We will first treat the case of an artificial boundary,
where the boundary conditions should be such that reflection of waves at
the boundary is kept to a minimum. For simplicity, let us consider a one-
dimensional model i G l ' ^ e l 1 which is obtained from the Schrodinger
equation in one spatial dimension. The presented methodology is given in
detail in Ringhofer, Ferry and Kluksdahl (1989) and represents a generaliz-
ation of the approach of Engquist and Majda (1977) for hyperbolic systems
to the infinite-dimensional case. In the one-dimensional collisionless case
the Wigner equation becomes

dtw + kdxw + 9[V]w = 0,x,keR1. (4.21)

We will assume the boundary to be located at x = 0 and the simulation
domain to be given by the half plane x > 0. Generalizations to more than
one boundary are straightforward. In the absence of the pseudo-differential
operator 0, the absorbing boundary condition would trivially be given by

w(x = 0, k, t) = 0, for k > 0, (4.22)
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since we assume that no waves enter the domain from outside the region.
The same would be true for an equation of the form

= f dk' G(x,t,k,k')w(x,k',t), (4.23)
JR

if the operator F is block diagonal in the sense that G(x, t, k, k') = 0 when
kk' < 0, since the solution w(x,k,t) for k < 0 is completely decoupled
from the solution w(x, k, t) for k > 0. The goal of the presented approach
is to achieve such a decoupling asymptotically for large wave speeds. If
we assume a plane wave solution in the x, t plane of the form w(x,k,t) =
g(k) exp[i£(x — ut)} with a velocity uo and a frequency £, dtw = —i^uiw holds
and the time derivative will be proportional to the velocity u. Thus, we
formally decouple k < 0 from k > 0 by expanding the operator in powers of
d~j~l for 'large dt'. This will be made more precise later. Setting formally

u = w - d^A[kw}, A[f](x, k,t)= [ dk' a(x,t, k, k')f{x, k\t), (4.24)

we obtain

kdxu = (1 - dtlkA)[kdxw] - kd^Ax[kw], (4.25)

where the operator Ax arises from differentiating the product, so

Ax[f](x,k,t)= I dk' dxa(x,t,k,k')f(x,k',t) (4.26)
JR

holds. Using the differential equation (4.21) yields

kdxu = (1 - di1kA)(-dt - 6[V])[w - kd^Ax{kw)}. (4.27)

Asymptotically, the inverse of the operator 1 — d~[lAk will be given by
l l 2l + d^lAk and w = u + d^lA(ku) + O(d^2) holds. So, formally, up to terms

of order O(dt~ ) we obtain

kdxu = -dtu + (dtlkAdt-Ak-d)u + O{dt2u)

= -dtu+(kA-Ak-6)u + O{dt2u). (4.28)

Therefore, we choose the operator A such that it diagonalizes the equation
(4.28). If we write the pseudo-differential operator 6 in terms of its kernel

6(u)(x,k,t) = [ dk' D(x,t,k-k')u(x,k',t),
/TO

D(x,t,r) = Jdv'-SV^c^e^, (4.29)
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then (k — k')a(x, t, k, k') — D(x, t, k - k') = 0 has to hold for kk' < 0. So, we
set

r D(x,t,k-k') , , , , n

a(x,t,k,k') = { *-*' t o r ** < U ' (4.30)
[ 0 otherwise,

and the absorbing boundary condition reads

u = w-dl~
1fdk'a(x,t,k,k')k'w(x,k',t)=O for x = 0, fc > 0.

(4.31)
Differentiating (4.31) once with respect to time gives an implementable

boundary condition. The above formal manipulations can be made precise
to make the whole approach more plausible. Given a solution w of the
Wigner equation (4.21), we define u by

dtu = dtw — I dk' a(x,t,k,k')k'w(x,k',t), u(x,k) = w(x,k). (4.32)
Jm.

A direct calculation gives the residuals for the inverse transformations

R = w-u, S = dt{w -u)- [ dk' a(x, t, k, k')k'u(x, k', t) (4.33)

dtR = A(kw), S = A(kR).

Inserting the new variable u into the transport operator and differentiation
with respect to time gives

dt (dtu + kdxu^j

= dt [dt + kdx) w-(dt + kdx) A(kw)

= -dt6(w) - (dt + kdx)A(kw)

= -6{dtw) - A(kdtw) - kA{kdxw) - (etw + At{kw) - kAx{kw)^j

= -B{dtw) - A(kdtw) - kA(dtw + 6(w)) - (otw + At(kw) - kAx{kw))

= -T(dtw) - L(w), (4.34)

where the operators 0t, At and Ax are the ones obtained from differentiating
the kernels with respect to x and t, the block diagonal operator F is given
by r(/) = 0(f) + A(kf) - kA(f) and L is given by L(f) = 0t(f) + At(kf) -
kAx(f) - kA(8(f)). Setting w = u + R and dtw = dtu + A(ku) + S, and
integrating with respect to time gives

dtu + kdxu + T(u) = H,

dtH = Tt(u)-T(A(ku))-T(A(kR))-L(u)-L(R),

dtR = A(k(u + R)). (4.35)
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The above system is decoupled up to the lower order term H. Imposing
the boundary condition u(x = 0, k > 0,t) = 0 and inserting a plane wave of
the form

u(x,k,t) = gu(k:u;,

H(x,k,t) = gH(k,LU,

R(x,k,t) = gR(k,LU,Oexp(i^(x-uJt)^ (4.36)

immediately gives that the waves travelling to the right (for k > 0) have
amplitudes of order 0{UJ~2), that is, gu(k,u,€) = O(co~2) for k > 0 holds.
So, the second-order absorbing boundary condition is of the form

dtu(0,k>O,t) = (dtw - A{kw)j(0, k > 0,t) = 0. (4.37)

In the case of an insulating surface, perfect reflection is imposed instead.
So, in this case, the boundary condition u(0, k, t) = u(0, —k, t), or

(dtw-A(kw)yo,k,t)=(dtw-A(kw)^(O,-k,t), for k > 0, (4.38)

holds. Finally, in the case of a contact, we will impose a boundary condition
modelling the injection of electrons according to a certain distribution. The
corresponding boundary condition is then given such that nothing but the
injected part of the distribution is reflected. Therefore, if we denote the
injection distribution by f(k), the absorbing boundary condition in (4.31)
acts o n i o - p(t)f, giving

dtw - f dk' o(x, t, k, k')k'w{x, k', t) = (4.39)
JR

f(k)dtp(t) - p(t) [ dk' a(x, t, k, k')k'f{k') for x = 0, k > 0,
JR

where the function p(t) is chosen such that the total charge in the device is
conserved.

4-2. Quantum hydrodynamic models

The calculation of quantum transport phenomena via the quantum Boltz-
mann equation becomes prohibitively expensive in more than two dimen-
sions. However, certain essential effects, such as non-monotone voltage
current characteristics or negative differential resistance (Gardner 1993a),
which are characteristic of the behaviour of quantum devices, can be simu-
lated using much simpler macroscopic models. Like their classical counter-
part, these model equations, the so-called quantum hydrodynamic equations
(Gardner 1994), are derived from a moment expansion of the underlying
kinetic equation. So, in the classical limit for h —>• 0, they reduce to the hy-
drodynamic model equations treated previously. Denoting the momentum
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hk by p and the corresponding moments by

(1) = / dk w, (pj) = / dk hkjiv,
JR3 JR3

= [ dk h2kjkiw, (\p\2) = f dk h2\k\2

Jm3 ^ ' JR3

= f dk n3kj\k\2w, (4.40)
JK.3

2w,

and taking the first three moments of the quantum Boltzmann equation
(2.38) gives

dt(l) + -dxl(Pl) = 0 (4.41a)
lib

dt<P3) + ̂ dXl(plPj)-edXjV(l) = {PjQ) (4.41b)

dt(\p\2) + ±dXl(pl\p\2)-2edXlV(pl) = (\p\2Q). (4.41C)

(In (4.41) the summation convention is used again.) The system has to be
closed again by expressing the pseudo-expectations (piPj), (pi\p\2), (PjQ)
and (\p\2Q) in terms of the primary variables (1) , (pj) and (|p|2). If the
Fokker-Planck term (2.40) is used as a collision operator, the moments on
the right-hand side of (4.41) become

<PiQ) = ~(Pj), (\p\2Q) = l(3mT0(l)-(\p\2)). (4.42)

As in the classical case, closure is achieved by assuming that the Wigner
function w is close to a wave vector displaced equilibrium density. Note that
the first three moments of the quantum Boltzmann equation are the same
as in the classical case. Therefore, quantum effects will enter solely through
the closure conditions. If we assume the form of a wave vector displaced
equilibrium density, so that

w(x, k, t) = we (x, k u{x,t)\ (4.43)
\ ti /

holds with some group velocity vector u, we obtain

(1) = n, (pj) = mnuj, (pjPi) = m2nujUi - mPji, (4.44)

= m2n\u\2 + mP =: 2mW, (p> | 2 ) = 2m2 (UjW -

where the Pji and P denote the second moments of the equilibrium density,
that is,

= ~ f dk kjkiwe,
771 J R 3
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holds. (It can always be assumed that the equilibrium density is symmetric,
which implies that the odd order moments of we vanish.) Following Gardner
(1994), the approximate equilibrium density is taken as

we(x,k) = A(x,t)fc- (4.46)

where p = hk holds and fc denotes the classical equilibrium density

fc = A(x,t)exp\—^= + - | . (4.47)

The form (4.46) is derived from an 0{hi) approximation of the thermal
equilibrium density first given by Wigner (1932). With this form of the
equilibrium density the moments Pji and P in (4.44) become

Pji = -nT63l - ^82
X]Xl log(n) + O(h% P =*-nT + ^ - Ax log(n)

(4.48)
and the quantum hydrodynamic equations become

dtn + dXl (nui) = 0 (4.49a)

mnuj) + dXl (mnuiUj — Pji) — edXjVn = — m n u j (4.49b)
r

1 ,o _ \ / /Idt [-mn\u\2 + p\ +dXl(ui (-mn\u\2 + P) -PijUj + qA (4.49c)

2 / l9

—endx,Vui = - [3Ton — m\u\

The structure of the quantum hydrodynamic equations is considerably
more complex than that of the classical hydrodynamic model. Because of
the presence of the term j2m,dXXln in the correction to the stress tensor
Pjk, the quantum hydrodynamic equations show the same dispersive beha-
viour as the underlying Wigner or Schrodinger equation. More precisely,
an analysis of the linearized problem shows that the corresponding mat-
rix has two hyperbolic (pure imaginary) eigenvalues, two dispersive modes
(real eigenvalues which are proportional to the frequency) of order h2 and
one parabolic eigenvalue, due to the presence of the heat conduction term
divx(«;VxT) (Gardner 1993a). At present, there are essentially two ap-
proaches to discretizing the quantum hydrodynamic system (4.49). The
first treats the quantum hydrodynamic equations as a perturbation of the
classical hydrodynamic system and uses a discretization appropriate for hy-
perbolic conservation laws. In this approach, the system is written as

dtZj + dXlFij{Z) = Rj(Z), Z = (n, mnu, WC
T), (4.50)
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where Wc denotes the classical energy term Wc = (l/2)(3nT+ mn\u\2), and
the flux F and the right-hand side R are given by

nu
TF(Z) = mnuu1 + nTl | ,

\ (Wc + nT)u
0

R(Z) = I nVxV - - p _ n VxQ , ̂  (4_51a)

nuTVxV - (Wc - \nT)lr + divx(«Va:r)

Q =

The term Q in (4.51b) is referred to as the Bohm potential. Writing
the quantum hydrodynamic system in the form (4.51), numerical methods
suitable for hyperbolic conservation laws are used. In Chen, Cockburn,
Gardner and Jerome (1995), a discontinuous Galerkin method is used in the
spatial direction to simulate hysteresis effects in resonant tunnelling diodes.
The time variable is discretized by a second-order explicit Runge-Kutta
method, where each of the intermediate stages are projected orthogonally
onto the manifold given by the Poisson equation.

A different approach to the discretization of the quantum hydrodynamic
system is used in Gardner (1993 a) for one-dimensional steady state simula-
tions. Here, as in the classical case, the system is written in a form suitable
for upwinding methods as

dx(uGj) + Hj + Sj = 0, j = 0, . . . , 3, (4.52)

with the Gj, hj and Sj given by

Go = n, G\ = mnu,

G2 = ̂ nT + \mnu2 - —d2
x log(n) - nV, G3 = 0 (4.53a)

Ho = 0, H1= dx(nT) - dx (^dl log(n) J - ndxV,

H2 = -dx(ndxT), H3 = ed2
xV (4.53b)

\nT + \mnu2 - ^ d 2 log(n) - ^

e2(ND -NA-n). (4.53c)
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Here the Poisson equation has already been included in the system. In this
form the one-dimensional quantum hydrodynamic equations are discretized
by conservative upwinding similar to the classical case. Thus, the term
dx(uGj) is discretized as

dx{uG3) « -L-6X (inxu)(nxGj) - ^xu\(6xGj)^ , (4.54)

where the averaging operator fix and the difference operator 8X are defined
as in (3.40). Notice, that the philosophy behind the upwind discretiza-
tion differs from the one presented above since the quantum correction
term (h2n/m)dx

l log(n) is included in the transport term G. This is only
possible in the one-dimensional case and results in the dispersive modes
of the quantum hydrodynamic system being heavily damped out through
the artificial diffusion produced by upwinding method. However, this one-
dimensional scheme has proven nevertheless to be quite successful in the
simulation of quantum mechanical phenomena, such as negative differential
resistance in actual devices.
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